Muharramadalah seorang pedagang gorengan. Dia menjual pisang goreng dan bakwan. Harga pembelian untuk satu pisang goreng Rp1.000,00 dan satu bakwan Rp400,00. Modalnya hanya Rp250.000,00 dan muatan gerobak tidak melebihi 400 biji. Jika pisang goreng dijual Rp1.300,00/biji dan bakwan Rp600,00/biji, keuntungan maksimum yang diperoleh Muharram Tergantungmerek dari minyak goreng yang dibelinya. Sebelum harga minyak goreng melambung, ia biasa membelinya seharga Rp 15 ribu per liter. Dalam sehari, Kokom bisa menghabiskan minyak goreng sebanyak dua hingga tiga liter. Hal itu pun membuatnya bimbang untuk menaikkan harga gorengan tempe, tahu, bakwan, risol, dan pisang yang biasa dijualnya. JurnalPost- Pendemi covid 19 telah membawa dampak besar bagi masyarakat. Apalagi bagi mereka yang harus bekerja di luar ruangan. Raja tondi (20) Beliaumemiliki satu orang anak laki-laki yang bekerja serabutan di bengkel dan sudah berumah tangga. Untuk membiayai hidupnya sehari-hari ibu L berjualan aneka gorengan seperti mendoan, tahu isi, bakwan, pisang goreng dan juga aneka kopi. Dulu saat sebelum ada pandemi Corona ini warung beliau ini sangat ramai sekali pembelinya. Adapunbisnis waralaba gorengan unik, modern dan terlaris yang bisa sobat ikuti, antara lain: 1. Usaha Piscok Goreng Pisang dan coklat menjadi satu membentuk pisang coklat atau disingkat piscok. Kuliner ini sangat digemari banyak orang. Karena memiliki rasa manis yang enak dan lezat. Adapun pangsa pasar yang dibidik sangat luas. Misalkan dengan modal Rp 300.000,-, seorang penjual gorengan dapat meraih keuntungan bersih hingga Rp 800.000,-. Gorengan seperti tempe goreng, tahu isi, bakwan, molen, pisang, ubi goreng, sukun, dan lain-lain seringkali laris manis diserbu pembeli. asal kota Surabaya. Ia memulai bisnis gorengannya saat umur 16 tahun dengan menjual 337resep gorengan unik ala rumahan yang mudah dan enak dari komunitas memasak terbesar dunia. 30 hari x Rp 200000 Rp 9000000. Pin Di Jajanan Anak . Beli Gerobak Gorengan terbaik harga murah August 2021 terbaru di Tokopedia. Tepung terigu tulips ini sangat cocok sekali untuk membuat aneka gorengan dan jajanan pasar yang sekira menggunakan TakGengsi Jualan Bakwan sampai Capung Goreng, Inilah 4 Artis yang Pernah Banting Tulang Jadi Pedagang Gorengan, Padahal Sudah Ngetop di Tanah Air! Inilah 4 artis yang pernah jualan gorengan demi 2 Seorang pedangan gorengan menjual pisang goreng dan bakwan. Harga pembelian untuk satu pisang goreng Rp1.000,00 dan satu bakwan Rp400,00. Modalnya hanya Rp250.000,00 dan muatan gerobak tidak melebihi 400 biji. Jika pisang goreng dijual Rp1.300,00biji dan bakwan dijual Rp600,00biji, keuntungan maksimum yang dapat diperoleh pedagang adalah 3. Exzz. Contoh soal Pembahasan program linier materi matematika kelas 12 SMA. Pelajari contoh-contoh berikut ini Soal No. 1 Luas daerah parkir m2. Luas rata-rata untuk mobil kecil 4 m2 dan mobil besar 20 m2. Daya tampung maksimum hanya 200 kendaraan. Biaya parkir mobil kecil Rp dan mobil besar Rp Jika dalam satu jam terisi penuh dan tidak ada kendaraan pergi dan datang, maka hasil maksimum tempat parkir itu adalah…. A. Rp B. Rp C. Rp D. Rp E. Rp Pembahasan Membuat model matematika dari soal cerita di atas Misal mobil kecil sebagai x, mobil besar sebagai y. Luas parkir 1760 m2 4x + 20 y ≤ 1760 disederhanakan menjadi x + 5y ≤ 440…….Garis I Daya tampung lahan parkir 200 kendaraan x + y ≤ 200 …………..Garis II Fungsi objektifnya adalah hasil parkiran fx, y = 1000 x + 2000 y Membuat Sketsa Garis 1 dan garis 2 Ubah tanda lebih besar atau lebih kecil menjadi tanda sama dengan terlebih dahulu, Garis 1 x + 5y = 440 Titik potong sumbu x, y = 0 x + 50 = 440 x = 440 Dapat titik 440, 0 Titik potong sumbu y, x =0 0 + 5y = 440 y = 440/5 = 88 Dapat titik 0, 88 Garis 2 x + y = 200 Titik potong sumbu x, y = 0 x + 0 = 200 x = 200 Dapat titik 200, 0 Titik potong sumbu y, x =0 0 + y = 200 y = 200 Dapat titik 0, 200 Menentukan titik potong garis 1 dan garis 2 Untuk menentukan titik potong bisa dengan substitusi ataupun eliminasi. x + 5y = 440 x + y = 200 ____________ _ 4y = 240 y = 60 x + y =200 x + 60 = 200 x = 140 Titik potong kedua garis aalah 140, 60 Berikut lukisan kedua garis dan titik potongnya, serta daerah yang diarsir adalah himpunan penyelesaian kedua pertidaksamaan di atas. Uji titik untuk mendapatkan fungsi obektif maksimum Masukkan koordinat titik-titik uji / warna merah ke fx, y = 1000 x + 2000 y Titik 0,0 → fx, y = 1000 0 + 200 0 = 0 Titik 200,0 → fx, y = 1000 200 + 2000 0 = 200 000 Titik 0, 88 → fx, y = 1000 0 + 2000 88 = 176 000 Titik 140,60 → fx, y = 1000 140 + 2000 60 = 260 000 Dari uji titik terlihat hasil parkiran maksimum adalah Rp 260 000 Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear. Nilai maksimum dari f x, y = 7x + 6y adalah…. A . 88 B. 94 C. 102 D. 106 E. 196 Pembahasan Cari persamaan kedua garis untuk dapat menentukan titik potongnya Cara pertama dalam membuat persamaan garis y − y1 = m x − x1 dengan m = Δy/Δx Persamaan garis yang melalui titik 12, 0 dan 0, 20 adalah m = 20/−12 = − 5/3 y − 20 = − 5/3 x − 0 y − 20 = − 5/3 x y + 5/3 x = 20 3y + 5x = 60 Persamaan garis yang melalui titik 18, 0 dan 0, 15 m = 15/−18 = − 5/6 y − 15 = − 5/6 x − 0 y + 5/6 x = 15 6y + 5x = 90 Cara kedua dalam membuat persamaan garis bx + ay = ab Untuk garis yang memotong sumbu x di 12 dan y di 20 adalah 20x + 12 y = 240 sederhanakan lagi 5x + 3y = 60 Untuk garis yang memotong sumbu x di 18 dan y di 15 adalah 15x + 18y = 270 sederhanakan lagi 5x + 6y = 90 Titik potong kedua garis 6y + 5x = 90 3y + 5x = 60 _________ – 3y = 30 y = 10 310 + 5x = 60 5x = 30 x = 6 Titik potong kedua garis adalah 6, 10 Uji titik f x, y = 7x + 6y Titik 0, 0 → f x, y = 70 + 60 = 0 Titik 12,0 → f x, y = 712 + 60 = 84 Titik 0, 15 → f x, y = 70 + 615 = 90 Titik 6, 10 → f x, y = 76 + 610 = 102 Nilai maksimum tercapai saat x = 6 dan y = 10 yaitu 102 Soal No. 3 Suatu perusahaan meubel memerlukan 18 unsur A dan 24 unsur B per hari. Untuk membuat barang jenis I dibutuhkan 1 unsur A dan 2 unsur B, sedangkan untuk membuat barang jenis II dibutuhkan 3 unsur A dan 2 unsur B. Jika barang jenis I dijual seharga Rp per unit dan barang jenis II dijual seharga Rp per unit, maka agar penjualannya mencapai maksimum, berapa banyak masing-masing barang harus dibuat? A. 6 jenis I B. 12 jenis II C. 6 jenis I dan 6 jenis II D. 3 jenis I dan 9 jenis II E. 9 jenis I dan 3 jenis II Pembahasan Barang I akan dibuat sebanyak x unit Barang II akan dibuat sebanyak y unit Ilustrasi berikut untuk memudahkan pembuatan model matematikanya x + 3y ≤ 18 2x + 2y ≤ 24 Fungsi objektifnya fx, y = 250000 x + 400000 y Titik potong x + 3y = 18 x2 2x + 2y = 24 x 1 2x + 6y = 36 2x + 2y = 24 ____________ _ 4y = 12 y = 3 2x + 63 = 36 2x = 18 x = 9 Titik potong kedua garis 9, 3 Berikut grafik selengkapnya Uji Titik ke fx, y = 250000 x + 400000 y Titik 0,0 fx, y = 250000 0 + 400000 0 = 0 Titik 12, 0 fx, y = 250000 12 + 400000 0 = 3000 000 Titik 9, 3 fx, y = 250000 9 + 400000 3 = 3450 000 Titik 0, 6 fx, y = 250000 0 + 400000 6 = 2400 000 Dari uji titik terlihat hasil maksimum jika x = 9 dan y = 3 atau dibuat 9 barang jenis I dan 3 barang jenis II. Soal No. 4 Seorang pedagang sepeda ingin membeli 25 sepeda untuk persediaan. Ia ingin membeli sepeda gunung dengan harga per buah dan sepeda balap dengan harga per buah. Ia merencanakan tidak akan mengeluarkan uang lebih dari Jika keuntungan sebuah sepeda gunung dan sebuah sepeda balap maka keuntungan maksimum yang diterima pedagang adalah… A. B. C. D. E. Pembahasan Banyak sepeda maksimal 25 Uang yang tersedia 42 juta Titik potong i dan ii Keuntungan Jawaban A Soal No. 5 Seorang pedagang gorengan menjual pisang goreng dan bakwan. Harga pembelian untuk satu pisang goreng dan satu bakwan Rp400,00. Modalnya hanya dan muatan gerobak tidak melebihi 400 biji. Jika pisang goreng dijual dan bakwan Rp600,00/biji, keuntungan maksimum yang diperoleh pedagang adalah… A. B. C. D. E. Pembahasan Gorengan jadi x, bakwan jadi y Modelnya 1000x + 400y ≤ 250000, sederhanakan, bagi 100 dapat persamaan i i 10x + 4y ≤ 2500 ii x + y ≤ 400 fx,y = 300x + 200y Titik potong garis i dan ii dengan sumbu x dan y masing-masing Grafik selengkapnya Uji titik A, B, C Soal No. 6 Nilai minimum dari fx,y = 4x + 5y yang memenuhi pertidaksamaan 2x + y ≥ 7, x + y ≥ 5, x ≥ 0, dan y ≥ 0 adalah… A. 14 B. 20 C. 23 D. 25 E. 35 Pembahasan Langsung cari titik potongnya dulu 2x + y = 7 x + y = 5 ———— − x = 2 y = 3 Dapat titik A 2, 3 Berikut grafik selengkapnya Uji titik fx, y = 4x + 5y A2, 3 = 42 + 53 = 23 B5, 0 = 45 + 50 = 20 C0, 7 = 40 + 57 = 35 Terlihat nilai minimumnya adalah 20. Seorang pedagang gorengan menjual pisang goreng dan bakwan. Harga pembelian untuk satu pisang goreng dan satu bakwan Rp400,00. Modalnya hanya dan muatan gerobak tidak melebihi 400 biji. Jika pisang goreng dijual dan bakwan Rp600,00/biji, keuntungan maksimum yang diperoleh pedagang adalah? Kunci jawabannya adalah C. Dilansir dari Encyclopedia Britannica, seorang pedagang gorengan menjual pisang goreng dan bakwan. harga pembelian untuk satu pisang goreng dan satu bakwan rp400,00. modalnya hanya dan muatan gerobak tidak melebihi 400 biji. jika pisang goreng dijual dan bakwan rp600,00/biji, keuntungan maksimum yang diperoleh pedagang adalah Seorang pedanagan gorengann menjual pisang goreng dan bakwan. Harga pembelian untuk satu pisang goreng dan satu bakwan Rp400,00. Modalnya hanya dan muatan gerobak tidak melebih 400 biji. Jika pisang goreng dijual dan bakwan dijual 600,00/biji, keuntungan maksimum yang dapat diperoleh pedagang adalah...